Beweglicher Linearer Trend


Moving Average Technische Indikator Die Moving Average Technische Indikator zeigt den durchschnittlichen Instrument Preis Wert für einen bestimmten Zeitraum. Wenn man den gleitenden Durchschnitt berechnet, berechnet man den Instrumentenpreis für diesen Zeitraum. Wenn sich der Preis ändert, steigt oder fällt sein gleitender Durchschnitt. Es gibt vier verschiedene Arten von gleitenden Durchschnitten: Einfach (auch als Arithmetik bezeichnet). Exponentiell. Geglättet und linear gewichtet. Bewegungsdurchschnitte können für jeden sequentiellen Datensatz berechnet werden, einschließlich der Eröffnungs - und Schlusskurse, der höchsten und niedrigsten Preise, des Handelsvolumens oder anderer Indikatoren. Es ist oft der Fall, wenn doppelte gleitende Durchschnitte verwendet werden. Das Einzige, wo sich verschie - dende Durchschnittswerte verschiedener Typen erheblich voneinander unterscheiden, ist, wenn Gewichtskoeffizienten, die den letzten Daten zugeordnet sind, unterschiedlich sind. Wenn wir von einem einfachen gleitenden Durchschnitt sprechen, sind alle Preise des fraglichen Zeitraums gleich wertig. Exponentielle und linear gewichtete Bewegungsdurchschnitte legen mehr Wert auf die neuesten Preise. Der gängigste Weg zur Interpretation des gleitenden Durchschnitts ist es, seine Dynamik mit der Preisaktion zu vergleichen. Wenn der Instrumentenpreis über seinem gleitenden Durchschnitt ansteigt, erscheint ein Kaufsignal, wenn der Kurs unter den gleitenden Durchschnitt fällt, was wir haben, ist ein Verkaufssignal. Dieses handelnde System, das auf dem gleitenden Durchschnitt basiert, ist nicht entworfen, um Eintritt in den Markt direkt in seinem niedrigsten Punkt und seinem Ausgang direkt auf dem Höhepunkt zur Verfügung zu stellen. Es erlaubt, nach dem folgenden Trend zu handeln: bald zu kaufen, nachdem die Preise den Boden zu erreichen, und zu verkaufen, bald nachdem die Preise ihren Höhepunkt erreicht haben. Bewegungsdurchschnitte können auch auf Indikatoren angewendet werden. Das ist, wo die Interpretation der Indikatorbewegungsdurchschnitte ähnlich der Interpretation der Preisbewegungsdurchschnitte ist: wenn der Indikator über seinem gleitenden Durchschnitt steigt, bedeutet das, dass die aufsteigende Indikatorbewegung wahrscheinlich fortfährt: wenn der Indikator unter seinen gleitenden Durchschnitt fällt, dieses Bedeutet, dass es wahrscheinlich weiter nach unten gehen wird. Hier sind die Arten von gleitenden Durchschnittswerten auf dem Chart: Einfacher Moving Average (SMA) Exponentieller Moving Average (EMA) Smoothed Moving Average (SMMA) Linearer gewichteter Moving Average (LWMA) Berechnung: Simple Moving Average (SMA) Wird der arithmetische gleitende Durchschnitt berechnet, indem die Preise des Instrumentenschlusses über eine bestimmte Anzahl von Einzelperioden (z. B. 12 Stunden) zusammengefasst werden. Dieser Wert wird dann durch die Anzahl dieser Perioden dividiert. Dabei ist: N die Anzahl der Berechnungsperioden. Exponential Moving Average (EMA) Der exponentiell geglättete gleitende Durchschnitt wird berechnet, indem der gleitende Durchschnitt eines bestimmten Anteils des aktuellen Schlusskurses auf den vorherigen Wert addiert wird. Bei exponentiell geglätteten gleitenden Durchschnitten sind die neuesten Preise von mehr Wert. P-Prozentsatz des exponentiellen gleitenden Durchschnitts wird wie folgt aussehen: Wo: CLOSE (i) der Preis des laufenden Periodenabschlusses EMA (i-1) Exponentiell bewegender Durchschnitt des vorherigen Periodenabschlusses P der Prozentsatz der Verwendung des Preiswerts. Smutterhed Moving Average (SMMA) Der erste Wert dieses geglätteten gleitenden Durchschnitts wird als einfacher gleitender Durchschnitt (SMA) berechnet: Der zweite und nachfolgende gleitende Mittelwert wird gemäß dieser Formel berechnet: wobei: SUM1 die Summe der Schlusskurse für N ist Perioden PREVSUM ist die geglättete Summe des vorherigen Balkens SMMA1 ist der geglättete gleitende Durchschnitt des ersten Balkens SMMA (i) ist der geglättete gleitende Durchschnitt des aktuellen Balkens (mit Ausnahme des ersten) CLOSE (i) ist der aktuelle Schlusskurs N Ist die Glättungsperiode. Linearer gewichteter gleitender Durchschnitt (LWMA) Bei gewichteten gleitenden Mittelwerten sind die letzten Daten von größerem Wert als frühere Daten. Der gewichtete gleitende Durchschnitt wird berechnet, indem jeder der Schlusskurse innerhalb der betrachteten Reihe mit einem gewissen Gewichtskoeffizienten multipliziert wird. Wobei: SUM (i, N) die Gesamtsumme der Gewichtskoeffizienten ist. Source Code Vollständige MQL4 Quelle von Moving Averages ist in der Codebasis verfügbar: Moving Averages Warnung: Alle Rechte an diesen Materialien sind von MetaQuotes Software Corp reserviert. Kopieren oder Nachdrucken dieser Materialien ist ganz oder teilweise verboten. Wählen Sie die beste Trendlinie für Ihre Daten Wenn Sie einem Diagramm in Microsoft Graph eine Trendlinie hinzufügen möchten, können Sie einen der sechs verschiedenen Trend - / Regressionstypen auswählen. Die Art der Daten, die Sie festlegen, bestimmt die Art der Trendlinie, die Sie verwenden sollten. Trendline-Zuverlässigkeit Eine Trendlinie ist am zuverlässigsten, wenn ihr R-squared-Wert auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten passt, berechnet Graph automatisch seinen R-Quadrat-Wert. Wenn Sie möchten, können Sie diesen Wert in Ihrem Diagramm anzeigen. Eine lineare Trendlinie ist eine am besten passende gerade Linie, die mit einfachen linearen Datensätzen verwendet wird. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten einer Linie ähnelt. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Im folgenden Beispiel zeigt eine lineare Trendlinie deutlich, dass der Umsatz der Kühlschränke über einen Zeitraum von 13 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert 0.9036 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine logarithmische Trendlinie ist eine am besten passende gekrümmte Linie, die am nützlichsten ist, wenn die Änderungsrate der Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und / oder positive Werte verwenden. Das folgende Beispiel verwendet eine logarithmische Trendlinie, um das prognostizierte Bevölkerungswachstum von Tieren in einem festen Raum zu veranschaulichen, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,9407 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Eine Polynom-Trendlinie ist eine gekrümmte Linie, die verwendet wird, wenn Daten schwanken. Es eignet sich zum Beispiel für die Analyse von Gewinnen und Verlusten über einen großen Datensatz. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Eine Ordnung 2 Polynom-Trendlinie hat in der Regel nur einen Hügel oder Tal. Ordnung 3 hat im Allgemeinen ein oder zwei Hügel oder Täler. Auftrag 4 hat in der Regel bis zu drei. Das folgende Beispiel zeigt eine Polynomlinie der Ordnung 2 (ein Hügel), um die Beziehung zwischen Geschwindigkeit und Benzinverbrauch zu veranschaulichen. Beachten Sie, dass der R-Quadrat-Wert 0,9474 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine Leistungs-Trendlinie ist eine gekrümmte Linie, die am besten mit Datensätzen verwendet wird, die Messungen vergleichen, die mit einer spezifischen Rate zunehmen, zum Beispiel die Beschleunigung eines Rennwagens in Intervallen von einer Sekunde. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel werden Beschleunigungsdaten durch Zeichnen der Distanz in Metern pro Sekunde dargestellt. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,9923 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Eine exponentielle Trendlinie ist eine gekrümmte Linie, die am nützlichsten ist, wenn Datenwerte mit zunehmend höheren Raten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel wird eine exponentielle Trendlinie verwendet, um die abnehmende Menge an Kohlenstoff 14 in einem Objekt darzustellen, während es altert. Beachten Sie, dass der R-Quadrat-Wert 1 ist, dh die Linie passt perfekt zu den Daten. Eine gleitende durchschnittliche Trendlinie glättet Fluktuationen in Daten, um ein Muster oder einen Trend deutlicher zu zeigen. Eine gleitende durchschnittliche Trendlinie verwendet eine bestimmte Anzahl von Datenpunkten (die von der Option Periode festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Trendlinie. Wenn Period beispielsweise auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als der zweite Punkt in der Trendlinie verwendet, und so weiter. Im folgenden Beispiel zeigt eine gleitende durchschnittliche Trendlinie ein Muster in der Zahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. Bei der Berechnung eines laufenden gleitenden Durchschnittes ist die Platzierung des Durchschnitts in der mittleren Zeitspanne sinnvoll Im vorigen Beispiel haben wir den Durchschnitt von berechnet Die ersten 3 Zeitabschnitte und platzierten sie neben Periode 3. Wir könnten den Durchschnitt in der Mitte des Zeitintervalls von drei Perioden platziert haben, das heißt, neben Periode 2. Dies funktioniert gut mit ungeraden Zeitperioden, aber nicht so gut Für gleichmäßige Zeiträume. Also, wo würden wir den ersten gleitenden Durchschnitt platzieren, wenn M 4 Technisch, würde der Moving Average bei t 2,5, 3,5 fallen. Um dieses Problem zu vermeiden, glätten wir die MAs mit M 2. So glätten wir die geglätteten Werte Wenn wir eine geradzahlige Anzahl von Termen mitteln, müssen wir die geglätteten Werte glätten Die folgende Tabelle zeigt die Ergebnisse mit M 4.Moving Average - MA BREAKING DOWN Gleitender Durchschnitt - MA Als SMA-Beispiel gilt eine Sicherheit mit folgenden Schlusskursen über 15 Tage: Woche 1 (5 Tage) 20, 22, 24, 25, 23 Woche 2 (5 Tage) 26, 28, 26, 29, 27 Woche 3 (5 Tage) 28, 30, 27, 29, 28 Eine 10-tägige MA würde die Schlusskurse für die ersten 10 Tage als ersten Datenpunkt ausrechnen. Der nächste Datenpunkt würde den frühesten Preis senken, den Preis am Tag 11 addieren und den Durchschnitt nehmen, und so weiter, wie unten gezeigt. Wie bereits erwähnt, verzögert MAs die aktuelle Preisaktion, weil sie auf vergangenen Preisen basieren, je länger der Zeitraum für die MA ist, desto größer ist die Verzögerung. So wird ein 200-Tage-MA haben eine viel größere Verzögerung als eine 20-Tage-MA, weil es Preise für die letzten 200 Tage enthält. Die Länge des zu verwendenden MA hängt von den Handelszielen ab, wobei kürzere MAs für den kurzfristigen Handel und längerfristige MAs eher für langfristige Anleger geeignet sind. Die 200-Tage-MA ist weithin gefolgt von Investoren und Händlern, mit Pausen über und unter diesem gleitenden Durchschnitt als wichtige Trading-Signale. MAs auch vermitteln wichtige Handelssignale auf eigene Faust, oder wenn zwei Durchschnitte überqueren. Eine steigende MA zeigt an, dass die Sicherheit in einem Aufwärtstrend liegt. Während eine sinkende MA zeigt, dass es in einem Abwärtstrend ist. In ähnlicher Weise wird das Aufwärtsmoment mit einem bulligen Crossover bestätigt. Die auftritt, wenn eine kurzfristige MA über einem längerfristigen MA kreuzt. Der Abwärtsmomentum wird mit einem bärischen Crossover bestätigt, der auftritt, wenn ein kurzfristiges MA unter ein längerfristiges MA geht. In der Praxis liefert der gleitende Durchschnitt eine gute Schätzung des Mittelwerts der Zeitreihe, wenn der Mittelwert konstant ist oder sich langsam ändert . Im Fall eines konstanten Mittelwertes wird der grßte Wert von m die besten Schätzungen des zugrunde liegenden Mittels liefern. Ein längerer Beobachtungszeitraum wird die Effekte der Variabilität ausmachen. Der Zweck der Bereitstellung eines kleineren m ist es, die Prognose auf eine Änderung in dem zugrunde liegenden Prozess zu ermöglichen. Um zu veranschaulichen, schlagen wir einen Datensatz vor, der Änderungen im zugrundeliegenden Mittel der Zeitreihen enthält. Die Abbildung zeigt die Zeitreihen für die Darstellung zusammen mit der mittleren Nachfrage, aus der die Serie erzeugt wurde. Der Mittelwert beginnt als eine Konstante bei 10. Ab dem Zeitpunkt 21 erhöht er sich um eine Einheit in jeder Periode, bis er zum Zeitpunkt 30 den Wert von 20 erreicht. Dann wird er wieder konstant. Die Daten werden simuliert, indem dem Mittelwert ein zufälliges Rauschen aus einer Normalverteilung mit Nullmittelwert und Standardabweichung 3 hinzugefügt wird. Die Ergebnisse der Simulation werden auf die nächste ganze Zahl gerundet. Die Tabelle zeigt die simulierten Beobachtungen für das Beispiel. Wenn wir die Tabelle verwenden, müssen wir bedenken, dass zu einem gegebenen Zeitpunkt nur die letzten Daten bekannt sind. Die Schätzwerte des Modellparameters, für drei verschiedene Werte von m, werden zusammen mit dem Mittelwert der Zeitreihen in der folgenden Abbildung gezeigt. Die Abbildung zeigt die gleitende durchschnittliche Schätzung des Mittelwerts zu jedem Zeitpunkt und nicht die Prognose. Die Prognosen würden die gleitenden Durchschnittskurven nach Perioden nach rechts verschieben. Eine Schlussfolgerung ergibt sich unmittelbar aus der Figur. Für alle drei Schätzungen liegt der gleitende Durchschnitt hinter dem linearen Trend, wobei die Verzögerung mit m zunimmt. Die Verzögerung ist der Abstand zwischen dem Modell und der Schätzung in der Zeitdimension. Wegen der Verzögerung unterschätzt der gleitende Durchschnitt die Beobachtungen, während der Mittelwert zunimmt. Die Vorspannung des Schätzers ist die Differenz zu einer bestimmten Zeit im Mittelwert des Modells und dem Mittelwert, der durch den gleitenden Durchschnitt vorhergesagt wird. Die Vorspannung, wenn der Mittelwert zunimmt, ist negativ. Bei einem abnehmenden Mittelwert ist die Vorspannung positiv. Die Verzögerung in der Zeit und die Bias in der Schätzung eingeführt sind Funktionen von m. Je größer der Wert von m. Desto größer ist die Größe der Verzögerung und der Vorspannung. Für eine stetig wachsende Serie mit Trend a. Die Werte der Verzögerung und der Vorspannung des Schätzers des Mittelwerts sind in den folgenden Gleichungen gegeben. Die Beispielkurven stimmen nicht mit diesen Gleichungen überein, da das Beispielmodell nicht kontinuierlich zunimmt, sondern als Konstante beginnt, sich in einen Trend ändert und dann wieder konstant wird. Auch die Beispielkurven sind vom Rauschen betroffen. Die gleitende Durchschnittsprognose der Perioden in die Zukunft wird durch die Verschiebung der Kurven nach rechts dargestellt. Die Verzögerung und die Vorspannung nehmen proportional zu. Die nachstehenden Gleichungen zeigen die Verzögerung und die Vorspannung von Prognoseperioden in die Zukunft im Vergleich zu den Modellparametern. Diese Formeln sind wiederum für eine Zeitreihe mit einem konstanten linearen Trend. Wir sollten dieses Ergebnis nicht überraschen. Der gleitende Durchschnittsschätzer basiert auf der Annahme eines konstanten Mittelwerts, und das Beispiel hat einen linearen Trend im Mittel während eines Teils des Studienzeitraums. Da Realzeitreihen den Annahmen eines Modells nur selten gehorchen, sollten wir auf solche Ergebnisse vorbereitet sein. Wir können auch aus der Figur schließen, dass die Variabilität des Rauschens den größten Effekt für kleinere m hat. Die Schätzung ist viel volatiler für den gleitenden Durchschnitt von 5 als der gleitende Durchschnitt von 20. Wir haben die widerstrebenden Wünsche, m zu erhöhen, um den Effekt der Variabilität aufgrund des Rauschens zu verringern und m zu verringern, um die Prognose besser auf Veränderungen anzupassen Im Mittel. Der Fehler ist die Differenz zwischen den tatsächlichen Daten und dem prognostizierten Wert. Wenn die Zeitreihe wirklich ein konstanter Wert ist, ist der erwartete Wert des Fehlers Null und die Varianz des Fehlers besteht aus einem Term, der eine Funktion von und ein zweiter Term ist, der die Varianz des Rauschens ist. Der erste Term ist die Varianz des Mittelwertes mit einer Stichprobe von m Beobachtungen, vorausgesetzt, die Daten stammen aus einer Population mit einem konstanten Mittelwert. Dieser Begriff wird minimiert, indem man m so groß wie möglich macht. Ein großes m macht die Prognose auf eine Änderung der zugrunde liegenden Zeitreihen unempfänglich. Um die Prognose auf Veränderungen anzupassen, wollen wir m so klein wie möglich (1), aber dies erhöht die Fehlerabweichung. Praktische Voraussage erfordert einen Zwischenwert. Prognose mit Excel Das Prognose-Add-In implementiert die gleitenden Durchschnittsformeln. Das folgende Beispiel zeigt die Analyse des Add-In für die Beispieldaten in Spalte B. Die ersten 10 Beobachtungen sind mit -9 bis 0 indexiert. Im Vergleich zur obigen Tabelle werden die Periodenindizes um -10 verschoben. Die ersten zehn Beobachtungen liefern die Startwerte für die Schätzung und werden verwendet, um den gleitenden Durchschnitt für die Periode 0 zu berechnen. Die Spalte MA (10) zeigt die berechneten Bewegungsdurchschnitte. Der gleitende Mittelwert m ist in Zelle C3. Die Fore (1) Spalte (D) zeigt eine Prognose für einen Zeitraum in die Zukunft. Das Prognoseintervall ist in Zelle D3. Wenn das Prognoseintervall auf eine größere Zahl geändert wird, werden die Zahlen in der Spalte Vorwärts verschoben. Die Err (1) - Spalte (E) zeigt die Differenz zwischen der Beobachtung und der Prognose. Zum Beispiel ist die Beobachtung zum Zeitpunkt 1 6. Der prognostizierte Wert, der aus dem gleitenden Durchschnitt zum Zeitpunkt 0 gemacht wird, beträgt 11,1. Der Fehler ist dann -5.1. Die Standardabweichung und mittlere mittlere Abweichung (MAD) werden in den Zellen E6 bzw. E7 berechnet.

Comments